Abstract
Post-buckling behavior of laminated composite, sandwich and functionally graded skew plates is analyzed in the present work. The problem formulation is based on higher-order shear deformation theory and von Karman’s nonlinear kinematics. Linear mapping is used to transform the physical domain into the computational domain. Chebyshev polynomials are used for spatial discretization of governing differential equations and boundary conditions. The nonlinear terms are linearized using quadratic extrapolation technique. The effect of the skew angle on the buckling and post-buckling response of the composite, sandwich and FGM-clamped skew plates is investigated for different combinations of in-plane compressive loadings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.