Abstract

PurposeThis paper aims to investigate post-buckling responses of shell-like structures using an implicit conservative-decaying time integration dynamic scheme.Design/methodology/approachIn this work, the authors have proposed the use of a four-node quadrilateral flat shell finite element with drilling rotational degree of freedom within the framework of an updated Lagrangian formulation mutually with an implicit conservative-dissipative time integration dynamic scheme.FindingsSeveral numerical simulations were considered to evaluate the accuracy, robustness, stability and the capacity of the considered time integration scheme to dissipate numerical noise in the presence of high frequencies. The obtained results illustrate a very satisfying performance of the implicit conservative-dissipative direct time integration scheme conjointly with the quadrilateral flat shell finite element with drilling rotation.Originality/valueThe authors have investigated the potential of the implicit dynamic scheme to deal with unstable branches after limit points in the non-linear post-buckling response of shell structures with no need for structural damping. The capability of the studied algorithm to study buckling and post-buckling behaviour of thin shell structures is illustrated through several numerical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.