Abstract

BackgroundHabitat selection is linked to a range of behavioral and non-habitat-related phenomena. The Snow Partridge (Lerwa lerwa) is a little known bird distributed along the Himalayas at high elevations in extreme habitat and a harsh climate. Unravelling the use of its habitat is important not only for understanding the ecology of this bird but also for its protection and conservation. Recent advances in modeling algorithms, in conjunction with the availability of environmental data, have made species distribution models (SDMs) widely accessible and used to predict available habitat and potential distributions.MethodsWe conducted a field study at Balangshan mountains on the Qinghai-Tibetan Plateau in west central China in August 2013. A line transect method and playback of recordings were used to survey suitable habitats. We established 20 m × 20 m plots at each flock location as well as control plots and measured 18 environmental variables. We used models of random forests to determine the micro-habitat variables that Snow Partridges might select, based on 25 presence and 27 absence locations and a maximum entropy algorithm (MaxEnt ver. 3.3.3.e) to predict their distribution in three counties, i.e., Wenchuan, Xiaojin and Baoxing in Sichuan Province, with a total area of 12,800 km2, adjacent to our main study site.ResultsWe found a total of 13 flocks of the Snow Partridge in our study area on pyramidal peaks, arêtes and steep rock slopes above 4430 m. The species is associated with habitats at the top of high cliffs or flatter terrain close to high cliffs, on more gentle slopes but still at high elevations. Terrain factors were the main factors affecting the selection of the micro-habitat by this partridge while vegetation is a more important factor at the meso-scale, with elevation as an important factor at both scales. Only 6.64% of our study area had features that might provide a suitable habitat for the Snow Partridge.ConclusionsMovements of the Snow Partridge, covering elevations from 4400 to 4700 m, were significantly associated with their habitat selection, whether on a micro- or a meso-scale of the three counties. Scale effect is an obvious topographic factor affecting the birds to avoid predators at the micro-habitat level and vegetation structure at the meso-habitat level for accessing food. Post-breeding habitat selection seems a trade-off between food availability and predator avoidance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call