Abstract

Herein, antimony sulfoselenide (Sb2(S, Se)3) thin‐film solar cells are fabricated by a hydrothermal method followed by a post‐deposition annealing process at different temperatures and the impact of the annealing temperature on the morphological, structural, optoelectronic, and defect properties of the hydrothermally grown Sb2(S, Se)3 films is investigated. It is found that a proper annealing temperature leads to high‐quality Sb2(S, Se)3 films with large crystal grains, high crystallinity, preferred crystal orientation, smooth and uniform morphology, and reduced defect density. These results show that suppressing deep‐level defects is crucial to enhance solar cell performance. After optimizing the annealing process, Sb2(S, Se)3 solar cells with an improved power conversion efficiency 2.04 to 8.48% are obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call