Abstract

AbstractThis paper reports novel photoresponsive, processable poly(esterimide)s functionalized with the azobenzene and tricyanovinylene groups. Post and prepolymerization strategies were utilized for preparation of the new photochromic polymers with imide rings. The postpolymerization method of azopolymer synthesis included a functionalization of precursor poly(esterimide) containing dialkylaminophenyl groups with diazonium salt of aniline. The precursor poly(esterimide) was obtained from synthesized 2,2′[N‐phenylethyloaniline‐di(4‐estro‐1,2‐dicarboxylic)]anhydride and 4,4′‐methylene bis(2,6‐dimethylaniline). The prepolymerization strategy based on polycondesation of 2,4‐diaminoazobenzene with two dianhydrides, that is, with or without the azobenzene group. The new dianhydride with azobenzene unit was obtained. The reaction of post‐tricyanovinylation was carried out for substitution of prepared polymers with tricyanovinylene groups. The synthesized polymers were characterized and evaluated by FTIR, 1H NMR, X‐ray, UV‐Vis spectroscopies, and DSC. The polymers exhibited glass transition temperatures in the range of 119–208°C and good solubilities in common organic solvents, providing optical‐quality films. Thermal stability of the polymers films was investigated by UV‐Vis spectroscopy. Preliminary investigations of the optical anisotropy in chosen poly(esterimide)s were carried out by photoinduced birefringence measurements. Relatively high photoinduced birefringence (Δn = 0.01) was measured for polyimide with covalently bonded azobenzene substituted with strong acceptor group. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.