Abstract

Abstract JOURNAL/nrgr/04.03/01300535-202406000-00039/inline-graphic1/v/2023-10-24T010719Z/r/image-tiff Post-acute ischemic stroke hyperglycemia increases the risk of hemorrhagic transformation, which is associated with blood-brain barrier disruption. Brain microvascular endothelial cells are a major component of the blood-brain barrier. Intercellular mitochondrial transfer has emerged as a novel paradigm for repairing cells with mitochondrial dysfunction. In this study, we first investigated whether mitochondrial transfer exists between brain microvascular endothelial cells, and then investigated the effects of post-acute ischemic stroke hyperglycemia on mitochondrial transfer between brain microvascular endothelial cells. We found that healthy brain microvascular endothelial cells can transfer intact mitochondria to oxygen glucose deprivation-injured brain microvascular endothelial cells. However, post-oxygen glucose deprivation hyperglycemia hindered mitochondrial transfer and exacerbated mitochondrial dysfunction. We established an in vitro brain microvascular endothelial cell model of the blood-brain barrier. We found that post-acute ischemic stroke hyperglycemia reduced the overall energy metabolism levels of brain microvascular endothelial cells and increased permeability of the blood-brain barrier. In a clinical study, we retrospectively analyzed the relationship between post-acute ischemic stroke hyperglycemia and the severity of hemorrhagic transformation. We found that post-acute ischemic stroke hyperglycemia serves as an independent predictor of severe hemorrhagic transformation. These findings suggest that post-acute ischemic stroke hyperglycemia can aggravate disruption of the blood-brain barrier by inhibiting mitochondrial transfer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call