Abstract
Small aromatic molecules with oxygen-containing functional groups (monoaromatic oxygenates) are common products of the catalytic depolymerization of lignin, which can be considered as a promising class of fuel additives. This mini-review article starts with an introduction of second generation (2G) of biofuel production from lignocellulose and the further conversion of lignin into fuel performance boosting blends. The discussion is divided into four parts. The first part gives a brief overview of the production of aromatic oxygenates from the catalytic conversion of lignin of different origin. The three following parts are focused on the aromatic oxygenates, for which combustion data can be found. The second part describes their chemical structure and physical properties. The third part is dominated by their global combustion performance, i.e., the commercial fuel parameters as lower heating value, octane and cetane numbers. A few studies on ignition delay times and laminar flame velocities are also described. The fourth part shortly reviews the kinetic studies presenting product quantifications, the proposed detailed kinetic models and the influence of the structure of the aromatic reactant on soot formation. To finish, a perspective on future research directions is given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.