Abstract

AbstractThe electrocopolymerization of o‐toluidine (OT) and p‐phenylenediamine (PPDA) on a platinum electrode in a solution of 0.5 mol/dm3 H2SO4 with cyclic voltammetry was examined. The addition of PPDA to the solution of OT in 0.5 mol/dm3 H2SO4 accelerated the electrocopolymerization of OT and PPDA. Fourier transform infrared spectroscopy and ultraviolet–visible spectra for the polymers showed that the unit of PPDA should have been integrated into the backbones of the copolymers to form phenazine‐like ring structures, and the delocalization of electrons in the copolymer was better than that in poly(o‐toluidine) (POT). The scanning electron microscopy (SEM) images for the polymers showed that the copolymers became more porous, and smaller particles, which made oxygen, oxidized the reduced copolymer more easily and faster. It was proven with SEM, energy‐dispersive X‐ray spectroscopy, and transmission electron microscopy that the size of the nanoplatinum particles deposited on the copolymer reached 10 nm and was much smaller than those on POT. They had better tolerance to the poisoning species arising from the intermediates of the dissociation of methanol on a platinum electrode during the electrocatalytic oxidation of methanol. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.