Abstract

A model of a D-Brane Topological Quantum Computer (DBTQC) is presented and sustained. The model is based on four-dimensional TQFTs of the Donaldson-Witten and Seiber-Witten kinds. It is argued that the DBTQC is able to compute Khovanov homology for knots, links and graphs. The DBTQC physically incorporates the mathematical process of categorification according to which the invariant polynomials for knots, links and graphs such as Jones, HOMFLY, Tutte and Bollobas-Riordan polynomials can be computed as the Euler characteristics corresponding to special homology complexes associated with knots, links and graphs. The DBTQC is conjectured as a powerful universal quantum computer in the sense that the DBTQC computes Khovanov homology which is considered like powerful that the Jones polynomial.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call