Abstract

Mutation of human immunodeficiency virus (HIV) leading to escape from anti-HIV drugs is the greatest challenge to the treatment of HIV infection. High-grade resistance to the nucleoside reverse transcriptase (RT) inhibitor lamivudine (also known as 3TC) is associated with a substitution of valine for methionine at position 184 of RT. This amino acid residue is contained within the HLA-A2-restricted epitope VIYQYMDDL (RT-WT). Here, we sought to determine whether a peptide vaccine could be developed using an epitope enhancement strategy that could induce a cytotoxic T-lymphocyte (CTL) response specific for an epitope containing the drug resistance mutation M184V to exert an opposing selective pressure. RT-WT-specific CTLs developed from HLA-A2 transgenic mice did not recognize the M184V mutation of RT-WT (RT-M184V). However, RT-M184V exhibited higher binding affinity for HLA-A2 than RT-WT. Also, both anchor-enhanced RT-WT (RT-2L9V) and RT-2L9V-M184V-specific CTLs recognized RT-M184V and displayed cross-reactivity to RT-WT. Nevertheless, the CTL repertoire elicited by the epitope-enhanced RT-2L9V-M184V appeared more selective for the RT inhibitor-induced M184V mutation. Peptide vaccines based on such strategies may be worth testing for their ability to exert selective pressure against drug-resistant strains and thus delay or prevent the development of HIV with the M184V resistance mutation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.