Abstract

Since Kerr described programmed cell death (apoptosis) as a process distinct from necrosis, there have been many studies of apoptosis in disease, especially of immunological origin. Because cardiac myocytes are terminally differentiated cells, they have typically been assumed to die exclusively by necrosis. However, during the last decade this view has been challenged by several studies demonstrating that a significant number of cardiac myocytes undergo apoptosis in myocardial infarction, heart failure, myocarditis, arrhythmogenic right ventricular dysplasia, and immune rejection after cardiac transplantation, as well as in other conditions of stress. These are potentially relevant observations, because apoptosis--unlike necrosis--can be blocked or reversed at early stages. Specific inhibition of this process may confer a considerable degree of cardioprotection, but requires a thorough understanding of the underlying mechanisms. Recent progress includes a better understanding of the importance of mitochondria-initiated events in cardiac myocyte apoptosis, of factors inducing apoptosis in heart failure and during hypoxia, and of the dual pro-apoptotic and anti-apoptotic effects of hypertrophic stimuli such as beta-adrenoceptor agonists, angiotensin converting enzyme inhibitors, nitric oxide and calcineurin. The investigation of cytoprotective and apoptotic signal transduction pathways has revealed important new insights into the roles of the mitogen-activated protein kinases p38, extracellular signal regulated kinase and c-Jun N-terminal kinase in cardiac cell fate. Our present review focuses on the intracellular signal transduction pathways of cardiac myocyte apoptosis and the possibility of specific inhibition of the process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call