Abstract

Abstract The semiconductor–semiconductor transition of La2RuO5 is studied by means of augmented spherical wave (ASW) electronic structure calculations as based on density functional theory and the local density approximation. This transition has lately been reported to lead to orbital ordering and a quenching of the local spin magnetic moment. Our results give strong hints for a different orbital ordering scenario than the one previously proposed. In our type of ordering the local S = 1 moment at the Ru sites is preserved in the low-temperature phase. The unusual magnetic behaviour is interpreted by the formation of spin ladders resulting from the structural transformations occurring at the transition. The spin ladders are characterized by antiferromagnetic coupling along the rungs. The loss of the total spin moment is attributed to a spin-Peierls transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.