Abstract

Mass Varying neutrino mechanisms were proposed to link the neutrino mass scale with dark energy, addressing the coincidence problem. In some scenarios this mass can present a dependence on the baryonic density felt by neutrinos, creating an effective neutrino mass that depends both on the neutrino and baryonic densities. In this article we investigate the possibility that a neutrino effective mass in matter in addition to a very small mass squared difference in vacuum (O(10−9 eV2)) are the main flavour conversion mechanism acting in neutrino oscillation experiments. We present a parameterization on the environmental effects on neutrino mass that produces the right flavour conversion probabilities for solar and terrestrial neutrinos experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call