Abstract

Alveolar osteitis (dry sockets) is a painful condition characterized by a limited immune response. It is typically caused by the removal of blood clots from extracted tooth sockets, which leads to the fermentation of trapped food remnants by oral bacteria in the cavities, producing high concentrations of short-chain fatty acids (SCFAs). This study examined the effects of SCFAs on immunity and bone metabolism. Mouse macrophage Raw264.7 cells were treated with oral bacteria supernatants or SCFA mixtures, and inducible nitric oxide synthase (iNOS) levels were determined by western blot. The same cells were treated with SCFA mixtures in the presence of receptor activator of nuclear factor-kappa B ligand (RANKL), and osteoclast-like cells were counted. MC3T3-E1 cells were treated with SCFA mixtures and stained with alizarin red S. Raw264.7 cells treated with oral bacterial culture supernatants of Porphyromonas gingivalis and Fusobacterium nucleatum inhibited lipopolysaccharide (LPS)-induced iNOS production, likely due to SCFA content. SCFA mixtures mimicking these supernatants inhibited the number of RANKL-induced tartrate-resistant acid phosphatase (TRAP)-positive cells and MC3T3-E1 cell mineralization. These data suggest that SCFAs produced by P. gingivalis and F. nucleatum may reduce the inflammatory response and mildly induce mineralization of the alveolar walls. These results may contribute to the understanding of alveolar osteitis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.