Abstract

BackgroundThe treatment of acute lymphoblastic leukemia (ALL) and osteosarcoma (OSC) is very effective: the vast majority of patients recover and survive for decades. However, they still need to face serious adverse effects of chemotherapy. One of these is cardiotoxicity which may lead to progressive heart failure in the long term. Cardiotoxicity is contributed mainly to the use of anthracyclines and might have genetic risk factors. Our goal was to test the association between left ventricular function and genetic variations of candidate genes.MethodsEchocardiography data from medical records of 622 pediatric ALL and 39 OSC patients were collected from the period 1989–2015. Fractional shortening (FS) and ejection fraction (EF) were determined, 70 single nucleotide polymorphisms (SNPs) in 26 genes were genotyped. Multivariate logistic regression and multi-adjusted general linear model were performed to investigate the influence of genetic polymorphisms on the left ventricular parameters. Bayesian network based Bayesian multilevel analysis of relevance (BN-BMLA) method was applied to test for the potential interaction of the studied cofactors and SNPs.ResultsOur results indicate that variations in ABCC2, CYP3A5, NQO1, SLC22A6 and SLC28A3 genes might influence the left ventricular parameters. CYP3A5 rs4646450 TT was 17% among ALL cases with FS lower than 28, and 3% in ALL patients without pathological FS (p = 5.60E-03; OR = 6.94 (1.76–27.39)). SLC28A3 rs7853758 AA was 12% in ALL cases population, while only 1% among controls (p = 6.50E-03; OR = 11.56 (1.98–67.45)). Patients with ABCC2 rs3740066 GG genotype had lower FS during the acute phase of therapy and 5–10 years after treatment (p = 7.38E-03, p = 7.11E-04, respectively). NQO1 rs1043470 rare T allele was associated with lower left ventricular function in the acute phase and 5–10 years after the diagnosis (p = 4.28E-03 and 5.82E-03, respectively), and SLC22A6 gene rs6591722 AA genotype was associated with lower mean FS (p = 1.71E-03), 5–10 years after the diagnosis.ConclusionsGenetic variants in transporters and metabolic enzymes might modulate the individual risk to cardiac toxicity after chemotherapy.

Highlights

  • The treatment of acute lymphoblastic leukemia (ALL) and osteosarcoma (OSC) is very effective: the vast majority of patients recover and survive for decades

  • The minor allele frequencies of the single nucleotide polymorphism (SNP) are presented in an additional table file in more detail [see Additional file 1]

  • Genotype distributions were in Hardy-Weinberg equilibrium except for one SNP (AKR1A1 (Aldo-Keto Reductase Family 1 Member A1) rs2934859) which was excluded from the analysis

Read more

Summary

Introduction

The treatment of acute lymphoblastic leukemia (ALL) and osteosarcoma (OSC) is very effective: the vast majority of patients recover and survive for decades. They still need to face serious adverse effects of chemotherapy. Acute lymphoblastic leukemia (ALL) and osteosarcoma (OSC) occur predominantly in pediatric patients. The primary goal of the scientific research is to increase the survival rate, but to identify and reduce the acute and late toxic side effects of chemotherapy and to improve the quality of life in adulthood [4, 7,8,9,10]. The constant monitoring of patients is important in order to identify subclinical anomalies before the clinical symptoms occur [17,18,19,20]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.