Abstract

It has been previously demonstrated that mitochondria are of crucial importance for posttetanic potentiation (PTP) at neuromuscular junction. The aim of our study was to examine whether this may also be the case at a central synapse. To address this question, we studied possible mitochondrial involvement in PTP of GABAergic synaptic transmission in rat neocortical cultures, a preparation in which PTP has not been previously documented. Synaptic responses were evoked by local extracellular stimulation. Whole-cell patch-clamp technique was employed to record inhibitory postsynaptic currents (IPSCs) from postsynaptic neurons. Tetanic stimulation (30 Hz, 4 s) of the presynaptic neuron evoked an increase of IPSC amplitude, lasting for about 1 min. PTP was accompanied by a decrease of coefficient of variation of the IPSC and a decrease of paired-pulse (IPSC(2)/IPSC(1)) ratio, indicating involvement of presynaptic mechanism(s) in PTP. Possible role of mitochondria in PTP was addressed using drugs affecting Ca(2+) uptake and subsequent Ca(2+) efflux: carbonyl cyanide 3-chlorophenylhydrazone (CCCP) and tetraphenylphosphonium ions (TPP(+)). It was found that both CCCP (1-2 microM) and TPP(+) (10 microM) either substantially decreased or eliminated PTP. These results further confirm presynaptic origin of PTP in neocortical neurons and suggest an important role of mitochondrial Ca(2+) turnover in this form of synaptic plasticity at the central synapse.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.