Abstract

The hippocampus as part of the limbic system is sensitive to gonadal hormones. The time-dependent expression of steroid receptors and the testosterone converting enzyme aromatase (CYP19) is well studied. In contrast, little is known about other cytochrome P450 enzymes in hippocampus which inactivate the gonadal hormones. For investigation of the total cytochrome P450 content and the expression of testosterone degrading CYP2B10 we used embryonic (E18) in comparison to postnatal (P21) immortalized hippocampal neurons. These embryonic neurons were demonstrated to react to hormones according a `critical period' of sexual differentiation: testosterone treatment (1 μM to 5 μM in the culture medium) resulted in a decrease of β-tubulin, as showed by immunocytochemistry and Western blotting. Measurements with reduced CO-difference spectrum elucidated that the P450 concentration in the embryonic neurons (10.2 pmol/mg protein; S.D. ±1.9) was twice as high as in the postnatal ones (5.2 pmol/mg protein; S.D. ±1.0). Correspondingly, a high value of the mitochondrial subfraction of approx. 141 pmol P450/mg protein was found in the embryonic neurons relative to the mitochondrial value of 37.7 pmol P450/mg protein in the postnatal neurons. Our results suggest a differential expression of cytochrome P450 during development. CYP2B10 was proved by electron microscopy and hormone degrading activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call