Abstract
Exposure of mouse neuroblastoma cell line N4TGl to opiates or [D-Ala2,D-Leu5] enkephalin produced a naloxone-reversible inhibition of cyclic AMP synthesis and prevented, in a concentration-dependent manner, the formation of both ganglioside GM2 (GalNAc-[NeuNAc]-Gal-Glc-ceramide) from GM3 (NeuNAc-Gal-Glc-ceramide) and ganglioside GM1 (Gal-GalNAc-[NeuNAc]-Gal-Glc-ceramide) from GM2 in cell-free extracts. In contrast, the receptor-mediated elevation of intracellular cyclic AMP levels by agents such as prostaglandin E1 (in the presence of isobutylmethylxanthine) or the addition of the cyclic AMP derivatives (dibutyryl cyclic AMP) markedly stimulated the activities of UDP-GalNAc:GM3,N-acetylgalactosaminyltransferase and UDP-Gal:GM2,galactosyltransferase. An overall increase in the synthesis of gangliosides more complex than GM3 was also observed in the mouse neuroblastoma x hamster brain explant hybrid cell line NCB-20 following elevation of cyclic AMP levels by treatment with serotonin and pargyline. The data presented support the hypothesis that cyclic AMP may have a role in the regulation of sialoglycosphingolipid biosynthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.