Abstract
MET is a high-affinity receptor tyrosine kinase of HGF (hepatocyte growth factor). HGF is secreted as an inactive single-chain precursor (pro-HGF), which requires proteolytic activation for conversion to an active form. HGF activator inhibitor (HAI)-2 is a transmembrane Kunitz-type serine protease inhibitor, which inhibits all pro-HGF-activating enzymes. In RCC, increased expression of MET and decreased expression of HAI-2 were reported to be poor prognostic factors. In the current study, we tried to inhibit the growth of RCC cells by dual inhibition of both MET phosphorylation and pro-HGF-activation using MET inhibitor and HAI-2 overexpression. A transgenic mouse model which expressed human HGF (HGF mouse) was used for in vivo analysis to evaluate the HGF/MET signaling axis accurately. Initially, doxycycline-induced HAI-2 overexpression RCC cells (786-O-HAI2) were prepared. The cells were cultured with pro-HGF, and inhibitory effect of MET inhibitor (SCC244) and HAI-2 was evaluated by phosphorylation of MET and cell proliferation. Next, the cells were subcutaneously implanted to HGF mice and the growth inhibition was determined by SCC244 and HAI-2. Single use of each inhibitor showed significant inhibition in MET phosphorylation, migration and proliferation of 786-O-HAI2 cells; however, the strongest effect was observed by combined use of both inhibitors. Although in vivo analysis also showed apparent downregulation of MET phosphorylation and growth inhibition in combined treatment, statistical significance was not observed compared with single use of MET inhibitor. Combined treatment with MET-TKI and HAI-2 suggested to consider as a candidate for new strong therapy for RCC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.