Abstract
AbstractThe geomagnetic field is maintained by amagnetohydrodynamic dynamo process within the liquid outer core. The distribution of the associated electric currents is modified if the outer core is bounded by electrically conducting material. Then, eddy currents and the related magnetic fields are generated within these regions. In particular, the relative rigid rotation of the inner core produces a secondary magnetic field, which is superimposed on the dynamo field. The angle between the dipole axis of the total field and the rotational axis of the inner core is an important quantity needed for the theory of polar motion of the Earth. This angle is investigated for a broad spectrum of angular velocities of the inner core.To simplify the mathematical procedure, we model the dynamo field using an axisymmetric field generated by a system of electric currents within the outer core. The conductivity of the mantle is neglected. We find that the position of the dipole axis depends on the angular velocity of the inner core as well as on the distribution of the current system within the outer core. Coincidence of both axes can be reached if the angular velocity is high enough and if the current system is concentrated within a thin sheet near the outer core‐inner core boundary.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.