Abstract

Recent investigations indicate the importance of meteorite impact as a process which has operated throughout geologic time to produce numerous originally circular structures as much as 50 km in diameter. One such structure, at Sudbury, Ontario, is associated with large volumes of internally derived igneous rock. Geological and experimental studies have demonstrated that rocks subjected to intense shock waves produced by hypervelocity meteorite impacts and by nuclear or chemical explosions develop distinctive and uniqueshock-metamorphic features, including: (1) high-pressure minerals such as coesite and stishovite; (2) crystal lattice deformation features such as isotropic feldspar (maskelynite) and « planar features » (shock lamellae) in quartz; (3) ultra-high-temperature reactions not produced by normal geological processes, such as decomposition of zircon to baddeleyite and melting of quartz to lechatelierite. These petrographic features, currently regarded as unequivocal evidence for meteorite impact, can be preserved and recognized even in very old and deeply eroded structures. Such features have now been observed in more than 50 « crypto-explosion » structures ranging in size from 2 km to more than 60 km in diameter. The recent discovery of shock-metamorphic features in rocks of the Sudbury structure, Ontario, indicates that this old and complex structure was also produced by a large meteorite impact. Petrographic shock effects are widespread in inclusions of « basement » rock in the Onaping « tuff », a unit now regarded as afallback breccia deposited in the original crater immediately after impact. Similar shock effects also occur in the footwall rocks around the basin, associated with shatter cones and unusual Sudbury-type breccias. Study of Sudbury specimens has establishedgrades of progressive shock metamorphism comparable to those recognized at younger impact structures (Brent, Ontario; Ries basin, Germany). Igneous activity associated with known meteorite impact structures takes two forms: The inferred development of the Sudbury structure was a complex process involving: (1) impact of an asteroidal body, forming a large (100-km) diameter crater with a central uplift; (2) subsidence of the central uplift and simultaneous emplacement of the Nickel Irruptive; (3) metamorphism, deformation, and erosion to its present appearance. The post-impact history of the Sudbury structure thus corresponds closely to that established for many ring-dike complexes and caldera subsidences. Similar compound impact-igneous structures, in which internal igneous activity is superimposed on a large impact crater, probably exist on both the earth and the moon. Future examination of « roofed lopoliths » and « ring-dike structures » for shock-metamorphic effects, combined with serious consideration of the geophysical effects produced by large-energy meteorite impacts, will be a productive field for cooperative studies by astrogeologists and igneous petrologists.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call