Abstract

We discuss possible pairing symmetries in the hexagonal pnictide superconductor SrPtAs. The local lack of inversion symmetry of the two distinct conducting layers in the unit cell results in a special spin-orbit coupling with a staggered structure. We classify the pairing symmetry by the global crystal point group D_3d, and suggest some candidates for the stable state using a tight-binding model with an in-plane, density-density type pairing interaction. We may have some unconventional states like s+f-wave and a mixture of chiral d-wave and chiral p-wave. The spin orbit coupling is larger than the interlayer hopping, and the mixing between spin-singlet and triplet states can be seen in spite of the fact that the system has a global inversion center.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.