Abstract

Poly(rC)-binding protein 1 (PCBP1) belongs to the heterogeneous nuclear ribonucleoprotein family and participates in transcriptional and translational regulation. Previous work has identified transcripts targeted by both knockdown and overexpression of PCBP1 in SH-SY5Y neuroblastoma cells using a microarray or ProteomeLab protein fractionation 2-dimensions (PF-2D) and quadrupole time-of-flight mass spectrometer. The present study aimed to further determine whether these altered transcripts from major pathways (such as Wnt signaling, TGF-β signaling, cell cycling, and apoptosis) and two other genes, H2AFX and H2BFS (screened by PF-2D), have spatial relationships. The genes were studied by qRT-PCR, and dynamic Bayesian network analysis was used to rebuild the coordination network of these transcripts. PCBP1 controlled the expression or activity of the seven transcripts. Moreover, PCBP1 indirectly regulated MAP2K2, FOS, FST, TP53 and WNT7B through H2AFX or regulated these genes through SAT. In contrast, TP53 and WNT7B are regulated by other genes. The seven transcripts and PCBP1 are closely associated in a spatial interaction network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.