Abstract

As the first-principles calculations using the supercell approximation give widely scattered results in a two-dimensional charged system, making the evaluation of defect ionization energy difficult, here an alternative constrained excitation is applied to overcome this problem for defect analysis. As an example in graphene oxide with 50% oxygen coverage (according to the popular epoxy-chain-plus-hydroxyl-chain model), the structures, stabilities, and electronic properties of nitrogen and boron dopants are investigated. Generally, boron prefers to replace carbon in the sp3 region as an acceptor while nitrogen has a tendency to substitute the sp2 carbon close to the boundary between the sp2 region and the sp3 region as a donor. Their ionization energies are 0.24–0.42 eV for boron and 0.32–0.67 eV for nitrogen. However, a special case of nitrogen doped in the boundary-sp3 carbon can change to be an acceptor with the assistance of its neighboring (epoxy) oxygen “Lift-off,” leading to the shallowest ionization energy of 0.12 eV and the best candidate for p-type conductivity. The present study offers the detailed pictures of boron and nitrogen defects in graphene oxide for the potential n- and p-type conductivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.