Abstract

A kinetic study of the uptake of nicotinamide by reconstituted liposomes containing the human erythrocyte glucose transporter, compared with that of D-glucose, demonstrated that the Km and Vmax. values were almost the same for each compound, and that the uptake of D-glucose was competitively inhibited by nicotinamide. At 20 mM concentration, 2-deoxy-D-glucose, 3-O-methyl-D-glucose and 4,6-O-ethylidene-D-glucose all caused 50% inhibition of nicotinamide uptake, but L-glucose and nicotinic acid were not inhibitory. Similar results were obtained for the uptake of D-glucose. Cytochalasin B binding to the liposomes was inhibited in a dose-dependent manner by either nicotinamide or D-glucose. Antibody for glucose transporter detected in band 4.5 by SDS/PAGE inhibited the uptake of D-glucose and nicotinamide. A possible uptake of nicotinamide by nucleoside transporter was excluded. In human erythrocytes, cytochalasin B binding was inhibited dose-dependently by either nicotinamide or D-glucose, and cytochalasin B depressed the uptake of both nicotinamide and 2-deoxy-D-glucose. These findings were well reproduced in the reconstituted liposomes. The very close similarities between uptake of nicotinamide and D-glucose suggest that the glucose transporter plays a direct role in transport of nicotinamide, which is structurally quite different from monosaccharides, and thus that the transporter is probably multifunctional.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call