Abstract

In retinal cone-HC synapse, it has been found that repetitive stimulation could induce postsynaptic short-term responsiveness enhancement. However, the detailed mechanism underlying this short-term plasticity in the retinal graded neurons remains unclear. In this study, based on an ion-channel model described using Hodgkin--Huxley equations, the possible mechanism of repetitive-stimulation-induced short-term plasticity in the synapse between retinal cones and horizontal cells was investigated. The computational simulation results, together with evidence from experimental observations, suggest that the short-term modification of signal transmission between the retinal graded neurons is likely to be attributed to the regulatory effects that calcium-dependent process exerts on the single-channel properties of the postsynaptic AMPA receptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.