Abstract

The mechanism for the accelerating effects of epidermal growth factor (EGF) and insulin-like growth factor I (IGF-I) on the meiotic cell cycle of bovine oocytes cultured in vitro was investigated. Cumulus-oocyte complexes (COCs) were obtained from small (< or = 3 mm in diameter), medium (4-6 mm in diameter) or large (7-10 mm in diameter) ovarian follicles and cultured with or without a combination of EGF and IGF-I (growth factors). Growth factors significantly increased the frequency of first polar body extrusion of oocytes derived from small follicles at 16 h of culture (PB16 oocytes; with growth factors: 75%; without growth factors: 55%), but did not increase the frequency in oocytes from medium or large follicles. COCs from small follicles were cultured with individual growth factors and sampled for kinase activity. The frequencies of polar body extrusion in EGF only (67%) and EGF + IGF-I (75%) treatment groups were significantly higher than those in the control (no growth factor) group (49%), but not significantly higher than in the IGF-I only group (63%). The H1 kinase activity at 6-8 h of culture in each group increased significantly from the baseline value at 0 h of culture, and the H1 kinase activities in the EGF only, IGF-I only and EGF + IGF-I treatment groups were significantly higher than those in the control group at 8 h of culture. MAP kinase activity was significantly higher than the baseline value and significantly higher than that in the control group at 6 h of culture in the EGF treatment group only. In conclusion, EGF and IGF-I act on COCs from small follicles to accelerate the meiotic cell cycle of the oocytes. This accelerating effect may be related to increased H1 and MAP kinase activities during the early stages of maturation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.