Abstract

It is demonstrated, that recently proposed by the author Q-ball mechanism of the pseudogap state and high-Tc superconductivity in cuprates may be detected in micro X-ray diffraction, since it imposes inverse correlations between the size and scattering intensities of the Q-ball charge-density-wave (CDW) fluctuations in these compounds. The Q-ball charge Q gives the number of condensed elementary bosonic excitations in a CDW fluctuation of finite amplitude. The attraction between these excitations inside Euclidean Q-balls is self-consistently triggered by the simultaneous condensation of Cooper/local pairs. Euclidean Q-ball solutions, analogous to the famous Q-balls of squarks in the supersymmetric standard model, arise due to the global invariance of the effective theory under the U(1) phase rotation of the Fourier amplitudes of the short-range CDW fluctuations. A conserved ‘Noether charge’ Q along the Matsubara time axis equals Q∝TM2V, where the temperature T, Q-ball’s volume V, and fluctuation amplitude M enter. Several predictions are derived in an analytic form that follow from this picture. The conservation of the charge Q leads to an inverse proportionality between the volume V and X-ray scattering intensity ∼M2 of the CDW puddles found in micro X-ray scattering experiments. The theoretical temperature dependences of the most probable Q value of superconducting Q-balls and their size and scattering amplitudes fit well the recent X-ray diffraction data in the pseudogap phase of high-Tc cuprates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.