Abstract

<abstract> <p>Carbon-based nanostructured materials are very promising for spintronic applications due to their weak spin-orbit coupling and potentially providing a long spin lifetime. Nanostructured carbons are not magnetic materials, but intrinsic magnetic behavioral nanostructure carbon materials could be fabricated through qualitative alterations. On alterations of carbon nanostructured materials, it changes their critical temperature and magneto-crystalline anisotropy energy that could be useful as favorable magnetic materials for different magnetic/electromagnetic device-based applications. Different processes are used for the alteration of nanostructure carbon materials like chemical doping, introducing defects, changing the density of states, functionalization, intercalation, forming heterostructure and fabricating nanocomposites layered semiconductor materials. Among the carbon-based derived nanostructured materials, the graphene oxide (GO) gets attracted towards the magnet forming in the spin-like structure across the area of the magnet. Due to its magnetic behaviour, it is used for the adsorption of metals and radionuclides and to make nonconductive oxide-metal. In this review article, the basics of magnetic behavioral change of the carbon-based GO/GO-nanocomposites nanostructured materials are described by gathering information from the literature that were/are reported by different researchers/research groups worldwide.</p> </abstract>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.