Abstract

White plague (WP) is a highly destructive coral disease that rapidly kills susceptible coral species by mass tissue lysis. The pathogen and underlying causes of this disease are not known. In this laboratory-based study, we examined a small coral-associated gall crab from the family Cryptochiridae in terms of a possible association with WP-like lesions. A series of experiments was conducted after observations that 2 scleractinian coral species, Diploria labyrinthiformis and Pseudodiploria strigosa, developed signs of WP-like disease within a laboratory holding aquarium and that small gall crabs were physically present in the center of each lesion. Using fragments of D. labyrinthiformis, a crab from one of the lesions was sequentially removed and placed, under controlled conditions, onto apparently healthy coral colonies, resulting in the development of similar lesions. Next-generation sequencing of the 16S rRNA gene was performed to profile the bacterial communities associated with the crab, lesions, and healthy corals. The microbiota of the crab and lesions were highly similar while that of apparently healthy colonies were significantly different. Significant differences were largely due to an increase in Alphaproteobacteria in crab and lesion communities. In particular, the Roseobacter clade had a higher relative abundance in the crab and WP-like lesions. This study suggests that the cryptochirid gall crab may be associated with development of WP-like lesions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.