Abstract

Two major features of the prestellar CMF are: 1) a broad peak below 1 Msun, presumably corresponding to a mean gravitational fragmentation scale, and 2) a characteristic power-law slope, very similar to the Salpeter slope of the stellar initial mass function (IMF) at the high-mass end. While recent Herschel observations have shown that the peak of the prestellar CMF is close to the thermal Jeans mass in marginally supercritical filaments, the origin of the power-law tail of the CMF/IMF at the high-mass end is less clear. Inutsuka (2001) proposed a theoretical scenario in which the origin of the power-law tail can be understood as resulting from the growth of an initial spectrum of density perturbations seeded along the long axis of filaments by interstellar turbulence. Here, we report the statistical properties of the line-mass fluctuations of filaments in nearby molecular clouds observed with Herschel using a 1-D power spectrum analysis. The observed filament power spectra were fitted by a power-law function $(P_{true}(s) \propto s^{\alpha})$ after removing the effect of beam convolution at small scales. A Gaussian-like distribution of power-spectrum slopes was found centered at -1.6, close to that of the one-dimensional velocity power spectrum generated by subsonic Kolomogorov turbulence (-1.67). An empirical correlation, $P^{0.5}(s_0) \propto <N_{\rm H_2}>^{1.4 \pm 0.1} $, was also found between the amplitude of each filament power spectrum $P(s_0)$ and the mean column density along the filament $<N_{\rm H_2}>$. Finally, the dispersion of line-mass fluctuations along each filament $\sigma_{\rm M_{line}}$ was found to scale with the physical length $L$ of the filament, roughly as $\sigma_{M_{line}} \propto L^{0.7}$. Overall, our results are consistent with the suggestion that the bulk of the CMF/IMF results from the gravitational fragmentation of filaments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.