Abstract
Low levels of cadmium induce a rapid calcium efflux in energized rat kidney mitochondria. This is accompanied by the collapse of the transmembrane gradient in a partial CSA-sensitive fashion. The binding of 109Cd 2+ to mitochondria is a saturable function; in the presence of NEM, the binding of 2.5 nmol 109Cd 2+/mg of protein suffices to induce the opening of the permeability transition pore. It was found that cadmium bound mainly to proteins of molecular weight between 30 and 50 kDa. In the presence of the monothiol reagent NEM, the label is concentrated in the 30 kDa protein. Following the addition of the reducing agent dithiothreitol, calcium is reaccumulated and the membrane potential restored. This correlates with a significant loss of label in the 30 kDa protein region. The 30 kDa protein was identified as the adenine nucleotide translocase by labelling experiments with eosin 5-maleimide and experiments of reconstitution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Biochemistry & Cell Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.