Abstract

ATP-sensitive potassium (KATP) channels consist of two structurally different subunits: a pore-forming subunit of the Kir6.0-family (Kir6.1 or Kir6.2) and a regulatory sulfonylurea receptor subunit (SUR1, SUR2A or SUR2B). Although Kir6.2 is widely distributed in the brain, the mechanisms that underlie the impact of Kir6.2 on emotional behavior are not yet fully understood. To clarify the role of Kir6.2 in emotional behavior, in the present study, we investigated the behavioral characteristics of Kir6.2-knockout (Kir6.2−/−) mice. Kir6.2−/− mice showed impaired general behavior in a locomotor activity test and open field test. In addition, anxiety-like behavior was observed in the open field test, elevated plus-maze test and light-dark test. In particular, excessive anxiety-like behavior was observed in female Kir6.2−/− mice. Moreover, we investigated whether Kir6.2 is expressed on monoamine neurons in the brain. Immunohistochemical studies showed that Kir6.2 was co-localized with tryptophan hydroxylase (TPH), a marker of serotonergic neurons, in dorsal raphe nuclei. Kir6.2 was also co-localized with tyrosine hydroxylase (TH), a marker of dopaminergic/noradrenergic neurons, in the ventral tegmental area and locus coeruleus. Next, we checked the protein levels of TH and TPH in the midbrain. Interestingly, TPH expression was significantly elevated in female Kir6.2−/− mice. These results suggest that Kir6.2 in monoamine neurons, especially serotonergic neurons, could play a key role in emotional behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.