Abstract
Recent studies have identified high glucose as a potent stimulus for the intracellular synthesis of angiotensin II. However, the exact roles of angiotensin II and angiotensin II type 1 receptor blockers (ARB) in high-glucose-induced renal tubular function remain unclear. N-Acetyl-beta-glucosaminidase (NAG), angiotensin II and 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentrations in renal proximal tubular epithelial cells (RPTECs) with or without high glucose/ARB were determined using a modified commercial procedure. The changes of p22phox and cytoplasmic inhibitory kappa B (IkB) protein levels in RPTECs were measured using Western blotting. High-glucose treatment (4x10-2 mol/L) significantly increased NAG release, angiotensin II concentrations in cell lysates and 8-OHdG and p22phox protein levels compared with those in regular glucose medium (1.75x10(-2) mol/L). ARBs (candesartan, olmesartan or valsartan; 1x10(-9)-10(-7) mol/L) showed a significant reduction in high-glucose-induced NAG, 8-OHdG and p22phox protein levels in RPTECs. Significant decreases of cytoplasmic IkB protein levels were observed in the high-glucose-treated group in RPTECs. ARBs markedly reversed high-glucose-induced reduction of IkB protein levels in RPTECs. ARBs reduce high-glucose-induced oxidative stress in RPTECs possibly via blockade of intracellular as well as extracellular AT1 receptor signaling, which possibly protects renal tubular cell function during diabetic nephropathy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.