Abstract

Effects of the impedance of lightning earthing path on lightning currents are investigated by computer simulation. Distributed-circuitry transmission line models with adequate values of inductance, resistance and capacitance are chosen to represent lightning channels, upward connecting leaders, structures and lightning protection systems (LPS). Both the current and voltage as a function of time and height of the lightning channel are simulated. Results show that for a lightning stroke without an upward connecting leader, the large lightning stroke current is firstly generated at the channel base and then propagates upward as its amplitude decreases. For the case with an upward leader, however, the return stroke current appears firstly at the connecting point of the upward- and downward- leaders, and then propagates bidirectionally down and up as its amplitude decreases. The existence of an upward leader makes both the lightning current and the rate of change of the current at the channel base smaller than...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.