Abstract

Abstract Photochemistry is recognized to be important for various physicochemical processes in the atmosphere, such as formation of the ozone layer and smogs, degradation of waste substances, etc. [1]. However, up to the present the emphasis in atmospheric photochemistry has been mainly on the study of photochemical reactions that occur with molecules directly excited by absorption of light quanta. However, the major components and impurities of the earth's atmosphere (such as nitrogen, oxygen, water, carbon dioxide, methane, methane halides, etc.) are totally transparent to most solar radiation. Electronically excited states of these molecules are formed only upon absorption of vacuum ultraviolet light quanta with energy hv ≥ 5 eV (i.e., with wavelength λ ≤ 200 nm). Only a small portion of the energy of solar light is found in this spectral region. In other words, most of the energy of the solar flux cannot participate in such direct photochemical reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.