Abstract
Charge neutral bilayer graphene has a gapped ground state as transport experiments demonstrate. One of the plausible such ground states is layered antiferromagnetic spin density wave (LAF) state, where the spins in top and bottom layers have same magnitude with opposite directions. We propose that lightly charged bilayer graphene in an electric field perpendicular to the graphene plane may be a half metal as a consequence of the inversion and particle-hole symmetry broken in the LAF state. We show this explicitly by using a mean field theory on a 2-layer Hubbard model for the bilayer graphene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.