Abstract

A well-known active galaxy of the blazar type, S5 0716+714, is characterized by a particularly high-variability duty cycle on short timescales at optical frequencies. As such, the source was subjected to numerous monitoring programs, including both ground-based as well as spaceborne telescopes. On closer inspection of the most recent accumulation of the data provided by the Transiting Exoplanet Survey Satellite, we have noticed several conspicuous events with “volcano-like” symmetric shape, all lasting for several hours, which closely resemble the achromatic events detected with the previous Whole Earth Blazar Telescope campaigns targeting the source. We propose that those peculiar features could be due to the gravitational microlensing of the innermost segments of the precessing jet in the system by a binary lens. We study the magnification pattern of the lens with the inverse-ray shooting method and the source trajectory parameters with the Python package MuLensModel. In this way, we were able to fit successfully all the selected events with a single lens, adjusting slightly only the source trajectory parameters for each lensing event. Based on the fit results, we postulate the presence of a massive binary lens containing an intermediate-mass black hole, possibly even a supermassive one, and a much less massive companion (by a factor of ≲0.01) located within the host galaxy of the blazar, most likely the central kiloparsec region. We discuss the major physical implications of the proposed scenario regarding the quest for the intermediate-mass and dual supermassive black holes in active galaxies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call