Abstract

The vast majority of neurodegenerative pathologies stem from the formation of toxic oligomers and aggregates composed of wrongly folded proteins. These protein complexes can be released from pathogenic cells and enthralled by other cells, causing the formation of new aggregates in a prion-like manner. By this mechanism, migrating complexes can transmit a disorder to distant regions of the brain and promote gradually transmitting degenerative processes. Molecular chaperones can counteract the toxicity of misfolded proteins. In this review, we discuss recent data on the possible cytoprotective functions of chaperones in horizontally transmitting neurological disorders.

Highlights

  • Conformational neurodegenerative pathologies, including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD), arise from the formation of oligomers, or amyloidogenic aggregates of mutant proteins, either in or adjacent it neural cells

  • The application of high-resolution methods to the analysis of extracellular pathogenic proteins led to the conclusion that, in all body fluids studied to date, the content of at least four protein pathogens was directly proportional to the age of a patient or severity of the disease, confirming that these exogenously transmitted polypeptides threaten those cells that are adjacent to the pathological cells (Verstraete et al, 2012; Cohen et al, 2016; Ruan et al, 2016; Shahnawaz et al, 2017)

  • The high cargo-transporting capacity of Hsp70 was demonstrated in our study, where we have shown that a 20-mer peptide derived from the chaperone sequence carrying avidin and anti-Hsp70 antibody was able to penetrate inside living cells and reduce their anti-apoptotic resistance by neutralizing self Hsp70 (Komarova et al, 2015)

Read more

Summary

Introduction

Conformational neurodegenerative pathologies, including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD), arise from the formation of oligomers, or amyloidogenic aggregates of mutant proteins, either in or adjacent it neural cells. Often mistakenly named as heat shock proteins (Hsps), have been shown to protect neural cells from numerous pathogenic factors, including those causing neurodegeneration; this is convincingly proved by data obtained from hundreds of cell and animal models.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.