Abstract

Basic peptides such as human immunodeficiency virus type 1 (HIV-1) Tat-(48-60) and Drosophila Antennapedia-(43-58) have been reported to have a membrane permeability and a carrier function for intracellular protein delivery. We have shown that not only Tat-(48-60) but many arginine-rich peptides, including HIV-1 Rev-(34-50) and octaarginine (Arg(8)), efficiently translocated through the cell membranes and worked as protein carriers (Futaki, S., Suzuki, T., Ohashi, W., Yagami, T., Tanaka, S., Ueda, K., and Sugiura, Y. (2001) J. Biol. Chem. 276, 5836-5840). Quantification and time course analyses of the cellular uptake of the above peptides by mouse macrophage RAW264.7, human cervical carcinoma HeLa, and simian kidney COS-7 cells revealed that Rev-(34-50) and Arg(8) had a comparable translocation efficiency to Tat-(48-60). Internalization of Tat-(48-60) and Rev-(34-50) was saturable and inhibited by the excess addition of the other peptide. Typical endocytosis and metabolic inhibitors had little effect on the internalization. The uptake of these peptides was significantly inhibited in the presence of heparan sulfate or chondroitin sulfates A, B, and C. Treatment of the cells with the anti-heparan sulfate antibody or heparinase III also lowered the translocation of these peptides. These results strongly suggest that the arginine-rich basic peptides share a certain part of the internalization pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.