Abstract
The possibility of stabilizing the theoretically predicted β–C3N4phase by high-energy ball milling is investigated. Charges of graphitic carbon were milled with and without minor alloying additions under different atmospheric media, namely gas and/or liquid phases of nitrogen, air, or ammonia. Milling was performed at either of two energy levels for periods of up to 48 h. The β–C3N4phase was found to exist as small crystallites in a matrix of primarily amorphous carbon at volume fractions estimated between 5 and 10 at.%. High-resolution electron diffraction and x-ray diffraction indicate that the crystalline nature of the C3N4phase corresponds with a hexagonal lattice witha= 6.46 Å andc/a= 0.374, which are within 2% of the theoretically calculated lattice parameter values. Analysis of electron energy-loss spectroscopy (EELS), x-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectra verify the presence of chemically bonded carbon and nitrogen with chemical states reflecting combinedsp2andsp3hybridization. Chemical analysis confirms nitrogen enrichment at levels consistent with the C3N4stoichiometry and the estimated degree of stabilization. The possible mechanism(s) responsible for the stabilization of the β–C3N4phase are briefly discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.