Abstract
Possible models for the generation of electromagnetic (EM) radiation during the coalescence of neutron star-black hole binaries are considered. The mass of the remnant disk around the black hole during the coalescence of neutron stars and black holes is calculated by taking into account the equation of state for neutron stars and the rotation of the binary components before the coalescence. The parameters of binary systems before the coalescence (the mass ratio, the component rotation, the neutron star magnetic field) are calculated by the population synthesis method. The derived mass of the remnant disk around the black hole after the coalescence is used to estimate the kinetic energy of the relativistic jet launched by the Blandford-Znajek mechanism. A disk mass of more than $\sim 0.05 M_\odot$ required for the formation of short gamma-ray bursts is shown to be obtained in no more than 1-10\% of the coalescences (depending on the equation of state). Less efficient common envelopes (a large parameter $\alpha_{CE}$) lead to a noticeably larger percentage of events with astrophysically interesting EM energy release. For binaries with a large mass ratio, in which a magnetized neutron star is not subjected to tidal disruption before the coalescence, the possibility of the formation of an electrically charged rotating black hole (Wald charge) is considered and estimates of the maximum EM power released by such a black hole after the coalescence are made. The conversion of the emitted gravitational waves into electromagnetic ones in the relativistic lepton plasma generated in coalescing pulsar-black hole binaries at the pre-coalescence stage is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.