Abstract

We cast a dual-charge-carrier model of surface conductance on γ-alumina in mathematical form. We then carry out first-principles calculations for various possible atomic-scale structures of the low- and high-temperature charge-carrier interactions with the γ-alumina surface to estimate the values of the energy parameters in the dual-charge-carrier model. By comparing the values of these energy parameters as determined by first-principles calculations to those obtained by fitting the mathematical form of the dual-charge-carrier model to experimental data, new insight is gained into the nature of the charge-carrier species. The results support the hypothesis that the intrinsic hydrogen content and surface moisture of γ-alumina provide a possible explanation of the observed thermal dependence of surface conductance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.