Abstract

We present high-precision photometry of eight separate transit events in the HAT-P-32 planetary system. One transit event was observed simultaneously by two telescopes of which one obtained a simultaneous multi-band light curve in three optical bands, giving a total of 11 transit light curves. Due to the filter selection and in conjunction with using the defocussed photometry technique we were able to obtain an extremely high precision, ground-based transit in the \textit{u}-band (350\,nm), with an rms scatter of $\approx 1$\,mmag. All 11 transits were modelled using \textsc{prism} and \textsc{gemc}, and the physical properties of the system calculated. We find the mass and radius of the host star to be $1.182\pm 0.041\Msun$ and $1.225\pm0.015\Rsun$, respectively. For the planet we find a mass of $0.80\pm 0.14\Mjup$, a radius of $1.807\pm0.022\Rjup$ and a density of $0.126\pm0.023\pjup$. These values are consistent with those found in the literature. We also obtain a new orbital ephemeris for the system $ T_0 = {\rm BJD/TDB} \,\, 2\,454\,420.447187 (96) \, + \,2.15000800 (10) \times E $. We measured the transmission spectrum of HAT-P-32\,A\,b and compared it to theoretical transmission spectra. Our results indicate a bimodal cloud particle distribution consisting of Rayleigh--like haze and grey absorbing cloud particles within the atmosphere of HAT-P-32\,A\,b.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.