Abstract

Sweet potato (Ipomoea batatas) is known for its ability to grow under nitrogen-limited conditions. To clarify the possible contribution of biological nitrogen fixation, we tried to isolate and identify diazotrophic bacteria from sweet potatoes. By using cultivation technique, we isolated putative endophytes, which possess nifH genes, from surface-sterilized sweet potatoes. Their nitrogen-fixing abilities were demonstrated by the acetylene reduction assay in a semi-solid malate medium and sweet potato extracts. We also examined the colonization of an isolated strain (AT1) in sweet potatoes and their influence on growth and nitrogen fixation in plants as assessed by an acetylene reduction assay and 15N-isotope dilution technique. The isolates were identified as strains of Bradyrhizobium sp. AT1, Paenibacillus sp. AS2 and Pseudomonas sp. T16 based on their 16S rRNA gene sequences. They showed acetylene reduction activity (ARA) in the semi-solid malate medium. Among them, B. sp. AT1 showed ARA in sweet potato extracts under micro-aerobic conditions whereas both P. sp. AS2 and P. sp. T16 showed no ARA. The inoculation of B. sp. AT1 to the sweet potatoes resulted in increases in the fresh weights and detection of ARA in the inoculated plants. Moreover, the reduction of 15N atom % was observed in the inoculated plants compared to uninoculated controls. B. sp. AT1 actively expresses nitrogenase activity in sweet potatoes and may contribute to the nitrogen nutrition of host plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call