Abstract
Up to one-third of patients with Parkinson's disease (PD) experience visual hallucinations (VHs). Lewy bodies are sparse in the visual cortices and seem unlikely to explain the hallucinations. Some neuroimaging studies have found that perfusion is reduced in the occipital lobe in individuals with VHs. Recent work has suggested that decreased cholinergic input may directly lead to the decreased perfusion. The investigators hypothesized that individuals with PD and VHs would have biochemical evidence of reduced microvascular perfusion and reduced cholinergic activity in areas of the brain that process visual images. Tissue from Brodmann's area (BA) 18 and BA 19 was obtained from a well-characterized cohort matched for age, gender, and postmortem interval in 69 individuals (PD without VHs, N=11; PD without dementia plus VHs N=10, N=10; PD with dementia plus VHs, N=16; and control subjects, N=32). Von Willebrand factor, vascular endothelial growth factor A, and myelin-associated glycoprotein:proteolipid protein-1 (MAG:PLP1) ratio-a measure of tissue oxygenation relative to metabolic demand, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), choline acetyltransferase, and α-synuclein-were quantified by enzyme-linked immunosorbent assay. The primary outcome was the MAG:PLP1 ratio. There was no biochemical evidence of chronic hypoperfusion in PD, although microvessel density was decreased in ventral BA 18 and BA 19. There was no between-group difference in BChE in either dorsal BA 18 or BA 19. AChE concentration was reduced in individuals with PD compared with control subjects in dorsal and ventral BA 18 and dorsal BA 19, and it was increased in ventral BA 19. These changes were most marked in the PD plus VHs group. These results suggest that changes in cholinergic activity rather than chronic hypoperfusion may underlie VHs in PD.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of Neuropsychiatry and Clinical Neurosciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.