Abstract

8-Hydroxydeoxyguanosine (8-OHdG) is well known not only as an effective biomarker of oxidative stress but also as a mutagenic DNA modification. Incorporation of dAMP at the opposite site of 8-OHdG induces G>T or A>C transversions. However, in vivo analyses of gene mutations caused by potassium bromate (KBrO3), which can induce 8-OHdG at carcinogenic target sites, showed that G>T was prominent in the small intestines of mice, but not in the kidneys of rats. Because KBrO3 was a much clearer carcinogen in the kidneys of rats, detailed analyses of gene mutations in the kidney DNA of rats treated with KBrO3 could improve our understanding of oxidative stress-mediated carcinogenesis. In the current study, site-specific reporter gene mutation assays were performed in the kidneys of gpt delta rats treated with KBrO3. Groups of 5 gpt delta rats were treated with KBrO3 at concentrations of 0, 125, 250, or 500 ppm in the drinking water for 9 weeks. At necropsy, the kidneys were macroscopically divided into the cortex and medulla. 8-OHdG levels in DNA extracted from the cortex were dramatically elevated at concentrations of 250 ppm and higher compared with those from the medulla. Cortex-specific increases in mutant frequencies in gpt and red/gam genes were found at 500 ppm. Mutation spectrum and sequence analyses of their mutants demonstrated significant elevations in A>T transversions in the gpt gene and single base deletions at guanine or adenine in the gpt or red/gam genes. While A>T transversions and single base deletions of adenine may result from the oxidized modification of adenine, the contribution of 8-OHdG to gene mutations was limited despite possible participation of the 8-OHdG repair process in guanine deletion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call