Abstract
Huntington's disease is an inherited neurodegenerative disorder caused by the overduplication of CAG repeats in the Huntingtin gene. Recent findings revealed that among the orthologs, the expansion of CAG repeats (polyQ) in the Huntingtin gene occurs in tandem with the duplication of CCG repeats (polyP). However, the molecular mechanism of this possible co-evolution remains unknown. We examined the structures of Huntingtin exon 1 (HttEx1) from six species along with five designed mutants. We found that the polyP segments "chaperone" the rest of the HttEx1 by forming ad hoc polyP binding grooves. Such a process elongates the otherwise poorly solvated polyQ domain, while modulating its secondary structure propensity from β-strands to α-helices. This chaperoning effect is achieved mostly through transient hydrogen bond interactions between polyP and the rest of HttEx1, resulting in a striking golden ratio of ∼2:1 between the chain lengths of polyQ and polyP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.