Abstract
In a seminal paper, Bacry and Lévy–Leblond classified kinematical algebras, a class of Lie algebras encoding the symmetries of spacetime. Homogeneous spacetimes (infinitesimally, Klein pairs) associated with these possible kinematics can be partitioned into four families—riemannian, lorentzian, galilean, and carrollian—based on the type of invariant metric structure they admit. In this work, we classify possible ambient kinematics—defined as extensions of kinematical algebras by a scalar ideal—as well as their associated Klein pairs. Kinematical Klein pairs arising as quotient space along the extra scalar ideal are said to admit a lift into the corresponding ambient Klein pair. While all non-galilean Klein pairs admit a unique—trivial and torsionfree—higher-dimensional lift, galilean Klein pairs are constructively shown to admit lifts into two distinct families of ambient Klein pairs. The first family includes the bargmann algebra as well as its curved/torsional avatars while the second family is novel and generically allows lifts into torsional ambient spaces. We further comment on the relation between these two families and the maximally symmetric family of leibnizian Klein pairs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.