Abstract
Abstract—A physically nonlinear constitutive equation with four arbitrary material functions for isotropic rheonomic materials is studied to determine the rheological effects simulated by it and the spheres of influence of the material functions. The properties of the volumetric, axial, and lateral creep curves generated by this equation and the dependence of the lateral strain coefficient (Poisson’s ratio) on the material functions, time, and stress during creep are analytically investigated. A general exact estimate of the upper and lower bounds of the Poisson’s ratio and criteria of its negativeness, increase, decrease, and constancy are obtained. The Poisson’s ratio of the model is proved not to be a nonmonotonic function of time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.